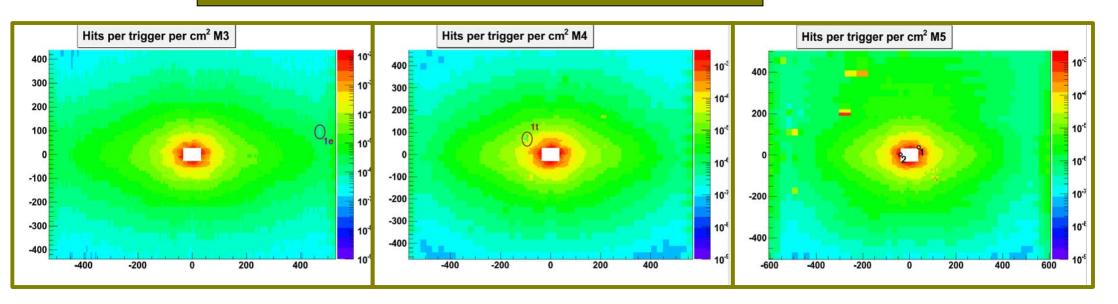



# LHCb в 2010 году





#### Эффективности подсистем





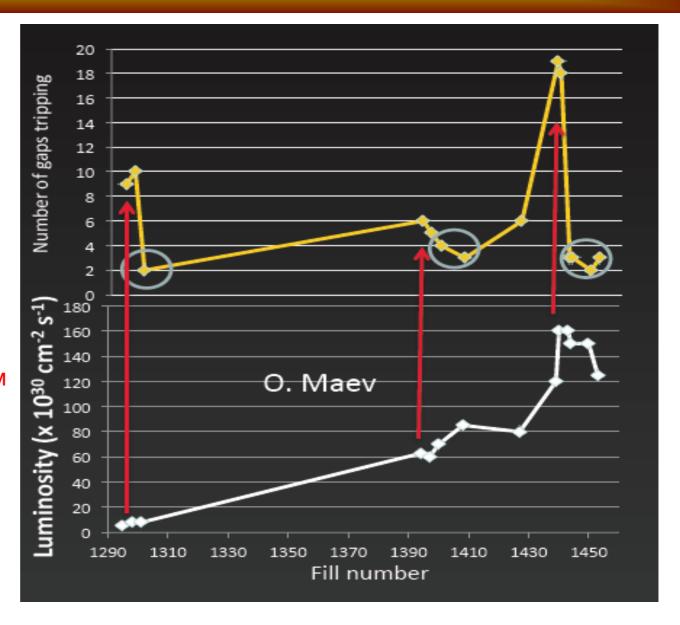

# Статус мюонной системы в 2010 году



#### События на триггер на cm<sup>2</sup>.



Н.Бондарь О. Маев




# Статус мюонной системы в 2010 году

С каждым резким увеличением интенсивности сталкивающихся пучков протонов, значительное число газовых промежутков выключалось (трипповало) из-за превышения максимального значения тока, что мгновенно сказывалось на общей эффективности детектора.

На рисунке представлена корреляция между ростом светимости коллайдера и числом трипповавших газовых промежутков.

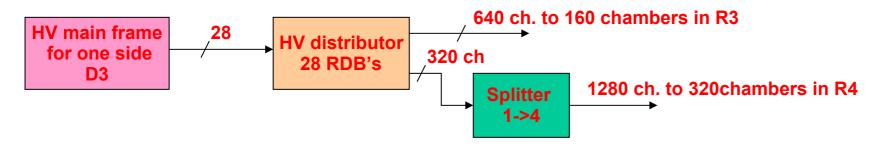
Сокращение количества трипующих промежутков связано с интенсивной работой по тренировке камер во время пучка для удержания высокой эффективности детектора.



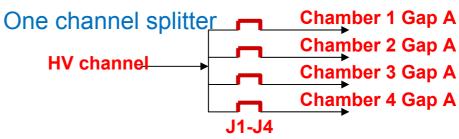


# Статус мюонной системы в 2010 году

В таблице представлена процентная составляющая трипповавших каналов по станциям и регионам.


| perce  | entage | •     |       |      |       |                 |        |      |                |       |      |       |   |
|--------|--------|-------|-------|------|-------|-----------------|--------|------|----------------|-------|------|-------|---|
|        |        |       |       |      |       | GAPS            |        |      |                |       |      |       |   |
| A-side |        |       |       |      |       |                 | C-side |      |                |       |      |       |   |
|        | R1     | R2    | R3    | R4   | total |                 |        | R1   | R2             | R3    | R4   | total |   |
| M1     | GEMs   | 8.33  | 14.58 | 1.56 | 4.55  |                 | M1     | GEMs | 12.50          | 2.08  | 1.04 | 2.27  | % |
| M2     | 0.00   | 2.08  | 6.25  | 0.26 | 1.45  |                 | M2     | 0.00 | 0.00           | 0.00  | 1.56 | 1.09  | % |
| M3     | 0.00   | 2.08  | 0.00  | 0.00 | 0.18  |                 | M3     | 0.00 | 0.00           | 2.08  | 0.00 | 0.36  | % |
| M4     | 0.00   | 6.25  | 5.21  | 0.00 | 1.45  |                 | M4     | 0.00 | 8.33           | 5.21  | 0.00 | 1.63  | % |
| M5     | 0.00   | 22.92 | 2.08  | 4.17 | 5.25  |                 | M5     | 0.00 | 2.08           | 2.08  | 0.52 | 0.91  | % |
| total  | 0.00   | 8.33  | 4.63  | 1.16 | 2.35  |                 | total  | 0.00 | 3.70           | 2.31  | 0.58 | 1.13  | % |
|        |        |       |       |      |       |                 |        |      |                |       |      |       |   |
|        |        |       |       |      |       |                 |        |      | Total gaps     |       |      | 1.74  | % |
|        |        |       |       |      |       | <b>CHAMBERS</b> |        |      |                |       |      |       |   |
| A-side |        |       |       |      |       |                 | C-side |      |                |       |      |       |   |
|        | R1     | R2    | R3    | R4   | total |                 |        | R1   | R2             | R3    | R4   | total |   |
| M1     | GEMs   | 16.67 | 16.67 | 3.13 | 6.82  |                 | M1     | GEMs | 16.67          | 4.17  | 2.08 | 3.79  | % |
| M2     | 0.00   | 8.33  | 20.83 | 1.04 | 5.07  |                 | M2     | 0.00 | 0.00           | 0.00  | 5.21 | 3.62  | % |
| М3     | 0.00   | 8.33  | 0.00  | 0.00 | 0.72  |                 | M3     | 0.00 | 0.00           | 8.33  | 0.00 | 1.45  | % |
| M4     | 0.00   | 25.00 | 16.67 | 0.00 | 5.07  |                 | M4     | 0.00 | 33.33          | 20.83 | 0.00 | 6.52  | % |
| M5     | 0.00   | 41.67 | 8.33  | 9.38 | 11.59 |                 | M5     | 0.00 | 8.33           | 8.33  | 2.08 | 3.62  | % |
| total  | 0.00   | 20.00 | 12.50 | 2.71 | 5.85  |                 | total  | 0.00 | 11.67          | 8.33  | 1.88 | 3.80  | % |
|        |        |       |       |      |       |                 |        |      |                |       |      |       |   |
|        |        |       |       |      |       |                 |        |      | Total chambers |       |      | 4.82  | % |

Камеры производства ПИЯФ




Точность устанвки выходного напряжения - не хуже 20В Точность измерения выходного тока - не хуже 20 нА

Схема подключения камер к высоковольтной системе UF/PNPI (1/2 детектора, текущий вариант).



Большинство камер 4-го региона подключены через разветвители на 4 канала – один канал питает у четырёх камер идентичные газовые промежутки.



В случае проблемы с высоким напряжением мы теряем от 4 промежутков до 24 камер (96 промежутков)! Правда до первой возможности зайти в экспериментальный зал.



Финальная схема подключения камер к высоковольтной системе UF/PNPI (1/2 детектора)



Каждый газовый промежуток подключён к своему источнику.

Для перехода на финальную схему необходимо изготовить:

- RDB36 56 модулей
- МВ8 8 модулей
- Специальный крейт для RDB36 8 шт
- Низковольтные перемычки 50 шт
- Сигнальнный шлейф 8 шт

Компоненты для системы заказаны в ЦЕРНе

ЦЕРН планирует установить эту систему в начале 2012 года



# Одновременно планируется установить блок управления высоковольтной системой с USB интерфейсом

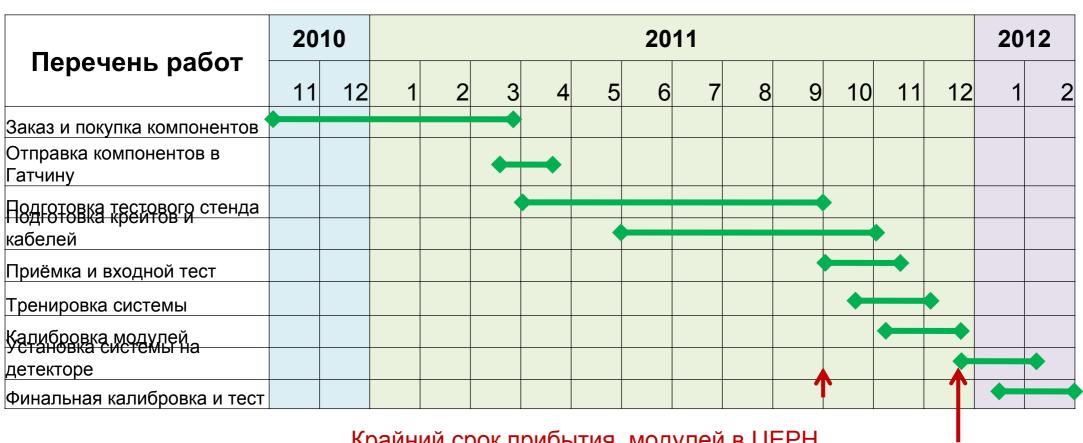
5 канальный интерфейс Стороны С



5 канальный интерфейс Стороны А

USB разъёны,




Задняя панель

Выходные разъёмы А

Выходные разъёмы С стороны



#### Предварительный план график работ в ЦЕРНе по переходу на финальную высоковольтную схему



Крайний срок прибытия модулей в ЦЕРН

Возможная дата начала установки ситемы

